A robust Bayesian analysis of some premium principles based on distorted bands of prior distributions.

Dr. Marta Sánchez-Sánchez
Joint with:
Dr. Miguel A. Sordo
Dr. Alfonso Suárez-Llorens
Dr. Emilio Gómez-Déniz

Universidad de Cádiz
April 2020
Outline

1. **Introduction**
 - Bayesian decision problems
 - Decision problems with certainty
 - Robust bayesian analysis

2. **Robust Bayesian Analysis**
 - Distortion function
 - Likelihood Ratio Order
 - The distorted band
 - Final results

3. **Example: An application in actuarial**
 - Bayesian risk Theory
 - The problem
 - Numerical example
 - Graphical examples

4. **The Bibliography**
Bayesian decision framework

Prior problem

- X an observation from a distribution P_{θ} with density $p_{\theta}(x)$.
- θ is a parameter in the parameter space Θ.
- $\pi(\theta)$ is a prior distribution over the set of states Θ.
- $l(\theta|x)$ is the likelihood function of a particular sample.

Posterior problem

- $\pi_x(\theta)$ denotes the posterior density when x is observed.

$$
\pi_x(\theta) = \frac{f(x|\theta)\pi(\theta)}{\int_\Theta f(x|\theta)\pi(\theta)\,d\theta} = \frac{f(x|\theta)\pi(\theta)}{m_\pi(x)}
$$

- L is a loss function and $a \in A$ a set of alternatives.
- The posterior expected loss:

$$
\rho(a, L, \pi) = \frac{\int_\Theta L(a, \theta)p_{\theta}(x)\pi(\theta)d\theta}{m_\pi(x)} = E^{\pi_x}[L(a, \theta)].
$$
Problem: To make decision (inference)

Using the posterior distribution $\pi_x(\theta)$ in order to obtain some posterior quantity of interest.

For example:

- It is usual to use the posterior distribution to make predictions or inference.
- It is possible to minimize the posterior expected loss to make inference, obtaining the Bayes actions:

$$\text{Bayes Action } a^*_x(L, \pi) = \arg\min_{a \in A} \rho(a, L, \pi) = \arg\min_{a \in A} E^{\pi_x} [L(a, \theta)].$$
Robustness

The classical criticisms: A unique prior?

A Bayesian analysis is robust if it does not depend sensitively on the assumptions and calculation inputs on which it is based.

Imprecision in beliefs and preferences: The classical criticism

- Beliefs modelled by a class of prior distributions, Γ.

Example (Imprecise in beliefs: Given a prior belief π.)

Some classical prior classes:

$$\Gamma_\epsilon = \{\pi' : \pi' = (1 - \epsilon)\pi + \epsilon Q, Q \in Q\}. \text{ The } \epsilon\text{-contamination.}$$

$$\Gamma_{F_L,F_U,\pi} = \{\pi' : F_U(\theta) \geq F_{\pi'}(\theta) \geq F_L(\theta), \forall \theta \in \Theta\}. \text{ The band class.}$$
Robustness

The classical criticisms: A unique prior?

A Bayesian analysis is robust if it does not depend sensitively on the assumptions and calculation inputs on which it is based.

Imprecision in beliefs and preferences: The classical criticism

- Beliefs modelled by a class of prior distributions, \(\Gamma \).

Example (Imprecise in beliefs: Given a prior belief \(\pi \).)

Some classical prior classes:

\[
\Gamma_\epsilon = \{ \pi' : \pi' = (1 - \epsilon)\pi + \epsilon Q, \ Q \in Q \}. \text{ The } \epsilon\text{-contamination.}
\]

\[
\Gamma_{F_L,F_U,\pi} = \{ \pi' : F_U(\theta) \geq F_{\pi'}(\theta) \geq F_L(\theta), \forall \theta \in \Theta \}. \text{ The band class.}
\]
A Bayesian analysis is robust if it does not depend sensitively on the assumptions and calculation inputs on which it is based.

A class of priors Γ implies a class of posterior distributions Γ_x. Ordering Bayes action (by using a class of loss functions) or any quantity of interest. To study the range of some posterior quantity of interest. Sometimes it is difficult in practice. We will use a new class of priors.
"New Classes of Priors Based on Stochastic Orders and Distortion Functions"

J. Pablo Arias Nicolás
Fabrizio Ruggeri
Alfonso Suárez Llorens

It is needed

- Stochastic orders.
- Distortion functions.
Preliminaries: distortion functions

A distortion function h is a non-decreasing continuous function $h : [0, 1] \rightarrow [0, 1]$ such that $h(0) = 0$ and $h(1) = 1$.

Distorted random variables: we represent a perturbation

Let h be a distortion function and let $\pi(\theta)$ a specific prior belief. Let us consider the transformation:

$$F_{\pi_h}(\theta) = h \circ F_{\pi}(x) = h[F_{\pi}(x)].$$

- F_{π_h} is also a distribution function for θ “a distorted random variable”.
- F_{π_h} represents a perturbation of the underlying accumulated probability: to measure the uncertainty about θ.
Preliminaries: distortion functions

A distortion function h is a non-decreasing continuous function $h : [0, 1] \rightarrow [0, 1]$ such that $h(0) = 0$ and $h(1) = 1$.

Distorted random variables: we represent a perturbation

Let h be a distortion function and let $\pi(\theta)$ a specific prior belief. Let us consider the transformation:

$$F_{\pi_h}(\theta) = h \circ F_{\pi}(x) = h\left[F_{\pi}(x)\right].$$

- F_{π_h} is also a distribution function for θ “a distorted random variable”.
- F_{π_h} represents a perturbation of the underlying accumulated probability: to measure the uncertainty about θ.
Some examples of distortion functions.

Distortion functions

- The classical power functions:
 \[h_1(x) = 1 - (1 - x)^\alpha \text{ and } h_2(x) = x^\alpha, \quad \forall \alpha > 1. \]
 \[F_{\pi h_1} (\theta) = 1 - (1 - F_\pi (\theta))^\alpha \text{ and } F_{\pi h_2} (\theta) = (F_\pi (\theta))^\alpha. \]

- The truncated distortions:
 \[h_1(x) = \min\left\{ \frac{x}{\alpha}, 1 \right\} \text{ and } h_2(x) = \max\left\{ \frac{x - \alpha}{1 - \alpha}, 0 \right\}, \quad \forall 0 < \alpha < 1. \]
 \[\pi_{h_1} = st \left[\pi \mid \pi \leq F_\pi^{-1}(\alpha) \right] \text{ and } \pi_{h_2} = st \left[\pi \mid \pi > F_\pi^{-1}(\alpha) \right]. \]

- The skewed distributions: \(\pi \) a symmetric distribution around 0.
 \[h_{\pi \pi^\alpha} (x) = \int_{-\infty}^{F_\pi^{-1}(x)} 2\pi(\theta)F_\pi (\alpha\theta) d\theta, \text{ convex } \alpha > 0, \text{ concave } \alpha < 0. \]
 \[\pi^\alpha (\theta) = 2\pi(\theta)F_\pi (\alpha\theta), \text{ right skewed } \alpha > 0, \text{ left skewed } \alpha < 0. \]
The likelihood ratio order: Shaked and Shanthikumar (2007)

Let X and Y be absolutely continuous [discrete] random variables with distribution functions F_X and F_Y and densities [discrete densities] f_X and f_Y, respectively, such that

$$\frac{f_Y(t)}{f_X(t)}$$

increases over the union of the supports of X and Y,

(here $a/0$ is taken to be equal to ∞ whenever $a > 0$). Then X is said to be smaller than Y in the likelihood ratio order (denoted by $X \leq_{lr} Y$).
Lemma: The relationship between \(\pi \) and \(\pi_h \).

Let \(\pi \) be a specific prior belief with distribution function \(F_\pi \) (absolutely continuous or discrete). Let \(h \) be a distortion function and \(F_{\pi_h}(\theta) = h \circ F_\pi(\theta) \). Then

- If \(h \) is convex then \(\pi \preceq_{lr} \pi_h \),
- If \(h \) is concave then \(\pi \succeq_{lr} \pi_h \).
A new class of priors

Definition

Let π be a specific prior belief. We will define the distorted band $\Gamma_{h_1,h_2,\pi}$ associated with π based on h_1 and h_2, a concave distortion function and a convex distortion function, respectively, (distorted band, for short), as

$$\Gamma_{h_1,h_2,\pi} = \{ \pi' : \pi_{h_1} \leq_{lr} \pi' \leq_{lr} \pi_{h_2} \} .$$

Remark

- A particular "neighborhood" band of $\pi \in \Gamma_{h_1,h_2,\pi}$.
- The lower and upper bound distributions are given by the distorted distributions.
- Uncertainty can be introduced just through an upper (lower) bound by considering h_1 (h_2) the identity function.
A new class of priors

Definition

Let π be a specific prior belief. We will define the distorted band $\Gamma_{h_1,h_2,\pi}$ associated with π based on h_1 and h_2, a concave distortion function and a convex distortion function, respectively, (distorted band, for short), as

$$\Gamma_{h_1,h_2,\pi} = \{ \pi' : \pi h_1 \leq_{lr} \pi' \leq_{lr} \pi h_2 \}.$$

Remark

- A particular "neighborhood" band of $\pi \in \Gamma_{h_1,h_2,\pi}$.
- The lower and upper bound distributions are given by the distorted distributions.
- Uncertainty can be introduced just through an upper (lower) bound by considering h_1 (h_2) the identity function.
The posterior consequences

Main results

Finally, they conclude:

- The set of posterior distributions can be interpreted as a posterior distorted band:
 \[\Gamma_{h_1,h_2,\pi,x} = \{ \pi' : \pi' \in \Gamma_{h_1,h_2,\pi} \} \longrightarrow \pi_{h_1,x} \leq lr \pi_x' \leq lr \pi_{h_2,x}. \]

- Let \(\pi \) be a specific prior belief and let \(\Gamma_{h_1,h_2,\pi} \) be the corresponding distorted band. Then
 \[a^*(L,\pi_{h_1}) \leq a^*(L,\pi') \leq a^*(L,\pi_{h_2}), \]
 \[\forall L \in \mathcal{L}_{sm} \text{ and } \forall \pi' \in \Gamma_{h_1,h_2,\pi}. \]

\(\mathcal{L}_{sm} \) is considered as the class of all convex loss functions which satisfy the submodularity. Widely used loss functions in the literature are included in this class: quadratic, lineal, mean square, . . .
The insurance risk $X_\theta \sim F(x, \theta)$ is a random variable which depends on a parameter $\theta \in \Theta$.

Example

Let be a insurance risk X_θ which follows a Poisson distribution, $X \sim P(\theta)$.
Insurance risk

The Premiums

Given a risk \(X_\theta \), a premium principle is a functional \(H[X] \) that maps \(X \) to a non-negative real number, which is the premium charged to the policyholder to compensate the insurer for bearing the risk \(X \).

Example

- Net Premium: \(H[X_\theta] = E[X_\theta] \).
- Dutch Premium: \(H[X_\theta] = E[X_\theta] + \beta_1 E[(X_\theta - \beta_2 E[X_\theta])^+] \), \(\beta_1 > 0, \beta_2 > 0 \).
- Exponential utility premium: \(H[X_\theta] = \frac{1}{\beta} \log E[e^{\beta X_\theta}] \), \(\beta > 0 \).
- Esscher premium: \(H[X_\theta] = \frac{E[X_\theta e^{\beta X_\theta}]}{E[e^{\beta X_\theta}]} \), \(\beta > 0 \).
The Bayesian point of view:

1. The parameter follows a prior belief, π.
2. Based on a sample x, we obtain the posterior density π_x.

The Risk Premium

As it is clear that $H[X_\theta]$ inherits the dependency of the parameter, $H[X_\theta] = P_{R,H}(\theta)$ is known as the risk premium based on H.

Example

Let be an insurance risk X_θ which follows a Poisson distribution, $X \sim P(\theta)$. Given the net premium $H[X_\theta] = E[X_\theta]$, then the risk premium is $P_{R,H}(\theta) = \theta$.
Defining Bayesian premiums in risk theory

The Bayesian point of view:

1. The parameter follows a prior belief, π.
2. Based on a sample x, we obtain the posterior density π_x.

The Risk Premium

As it is clear that $H[X_\theta]$ inherits the dependency of the parameter, $H[X_\theta] = P_{R,H}(\theta)$ is known as the risk premium based on H.

Example

Let be an insurance risk X_θ which follows a Poisson distribution, $X \sim P(\theta)$. Given the net premium $H[X_\theta] = E[X_\theta]$, then the risk premium is $P_{R,H}(\theta) = \theta$.

How to compute premiums from the Bayesian perspective?

- If we consider the random risk $P_{R,H}(\pi)$ as a transformation of the prior belief distribution \Rightarrow We compute the collective premium $H'[P_{R,H}(\pi)] = P_{C,H,H'}(\pi)$.
- If we consider the random risk $P_{R,H}(\pi_x)$ as a transformation of the posterior belief distribution \Rightarrow We compute the Bayesian premium $H'[P_{R,H}(\pi_x)] = P_{B,H,H'}(\pi_x)$.

Example

Let X_θ be an insurance risk which follows a Poisson distribution, $X \sim P(\theta)$. Given the net premium $H[X_\theta] = E[X_\theta]$, then $P_{R,H}(\theta) = \theta$. Let suppose that $\pi \sim Ga(a,b)$ and $\pi_x \sim Ga(a + n\bar{x}, b + n)$, from a sample. Then, given the net premium for $H'[X_\theta]$, we obtain

$$P_{C,H,H'}(\pi) = \frac{a}{b} \quad \text{and} \quad P_{B,H,H'}(\pi_x) = \frac{a + n\bar{x}}{b + n}.$$
Some new definitions

Positive dependence between π and X can be expected

Given a premium principle H, we will say that X_θ is increasing in risk for H, in short IR_H, if the Risk premium $P_{R,H}(\theta)$ is non-decreasing in the parameter space Θ.

A class of premium principle

Given X and Y two random risks we will denote by \mathcal{H}_{lr} the class of all premium principles such that preserve the likelihood ratio order:

$$\mathcal{H}_{lr} = \{ H : \text{ If } X \leq_{lr} Y \text{ then } H[X] \leq H[Y] \}.$$
Main results

Lemma

Given $\theta_1 < \theta_2$, if $X_{\theta_1} \leq_{lr} X_{\theta_2}$ then X_θ is IR_H for all $H \in \mathcal{H}_{lr}$.

Some members of the class

- The net premium.
- The Esscher premium.
- The Dutch premium
- The exponential utility premium.
- The Wang premium.
- The generalized variance premium.
Main results

Lemma

Given $\theta_1 < \theta_2$, if $X_{\theta_1} \leq_{lr} X_{\theta_2}$ then X_θ is I_{RH} for all $H \in \mathcal{H}_{lr}$.

Some members of the class

- The net premium.
- The Esscher premium.
- The Dutch premium
- The exponential utility premium.
- The Wang premium.
- The generalized variance premium.
Main results

Theorem

Let X_θ and π be a random risk depending on a parameter θ and a specific prior belief, respectively. Let $\Gamma_{h_1,h_2,\pi}$ be the corresponding distorted band associated with π based on h_1 and h_2. Then

1. $P_{C,H,H'}(\pi_{h_1}) \leq P_{C,H,H'}(\pi') \leq P_{C,H,H'}(\pi_{h_2}),$

2. $P_{B,H,H'}(\pi_{h_1,x}) \leq P_{B,H,H'}(\pi'_{x}) \leq P_{B,H,H'}(\pi_{h_2,x}),$

for all premium principle H such that X_θ is IR_H, for all $H' \in \mathcal{H}_{lr}$ and for all $\pi' \in \Gamma_{h_1,h_2,\pi}$.
Example 1: The problem

"The Esscher premium principle in risk theory: a Bayesian sensitivity study"

E. Gómez Deniz
A. Hernández Bastida
F. J. Vázquez Polo

- To use the ϵ-contamination:

$$\Gamma_\epsilon = \{ \pi' : \pi' = (1 - \epsilon)\pi + \epsilon Q, Q \in Q_1 \},$$

where $Q_1 = \{ \text{All probability distribution} \}$ and $Q_2 = \{ \text{All distributions which are unimodal with the same mode, } \theta_0, \text{ as that of } \pi_0 \}$.

- To use the Esscher premium as the collective and the Bayesian premiums.
Example 1: The model

The initial problem

- The total number of claims is a Poisson distribution $P(\theta)$, $IR_H \forall H \in \mathcal{H}_{lr}$.
- The amount of an individual claim is taken as 100 monetary units.
- The prior distribution follows a Gamma distribution $\Gamma(5, 2)$ -the actuary expects 5 claims every 2 years, 2.5 claims-.
- We know the sample mean, \bar{x}, of the number of claims for 10 periods.
- The posterior distribution follows a Gamma distribution $\Gamma(5 + 10\bar{x}, 2 + 10)$.
- For the collective and Bayesian premium we will consider the following combinations of H and H^*:

<table>
<thead>
<tr>
<th>$H - H^*$</th>
<th>Net-Net</th>
<th>Esscher-Net</th>
<th>Esscher-Esscher</th>
<th>Exponential Utility-Net</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collective Premium</td>
<td>$\frac{a}{b}$</td>
<td>$e^{\beta} \frac{a}{b}$</td>
<td>$\frac{e^{\beta}a}{b - \beta e^{\beta}}$</td>
<td>$(e^{\beta} - 1) \frac{a}{b^2}$</td>
</tr>
<tr>
<td>Bayesian Premium</td>
<td>$\frac{a + nx}{b + n}$</td>
<td>$e^{\beta} \frac{a + nx}{b + n}$</td>
<td>$\frac{e^{\beta}a + nx}{(b + n) - \beta e^{\beta}}$</td>
<td>$(e^{\beta} - 1) \frac{a + nx}{b(b + n)}$</td>
</tr>
</tbody>
</table>

Table: Values for the premiums depending on the premium principles.

$(\beta = 0.0953$ is the risk aversion constant).
The model

The distorted problem

- There are not closed-form expressions for the bounds, neither for the prior bounds $\pi_{h_{\alpha_1}}(\theta)$ and $\pi_{h_{\alpha_2}}(\theta)$ nor for the posterior ones $\pi_{h_{\alpha_1},x}(\theta)$ and $\pi_{h_{\alpha_2},x}(\theta))$. However, it is known that

$$P_{B,H,H^*}(\pi_{h_{\alpha_1},x}) \leq P_{B,H,H^*}(\pi'_{x}) \leq P_{B,H,H^*}(\pi_{h_{\alpha_1},x}), \forall \pi' \in \Gamma_{h_{\alpha_1},h_{\alpha_2},\pi},$$

- We simulate different scenarios: $\alpha = 1.05, 1.11, 1.15, 1.2$ and $\bar{x} = 2, 5$.

Example: \(\bar{x} = 2 \) and \(n = 10 \)

Net Premium - Net Premium

- \(\alpha_1 = \alpha_2 = 1.05 \)
- \(\alpha_1 = \alpha_2 = 1.1 \)
- \(\alpha_1 = \alpha_2 = 1.15 \)
- \(\alpha_1 = \alpha_2 = 1.2 \)

Esscher Premium - Esscher Premium

- \(\alpha_1 = \alpha_2 = 1.05 \)
- \(\alpha_1 = \alpha_2 = 1.1 \)
- \(\alpha_1 = \alpha_2 = 1.15 \)
- \(\alpha_1 = \alpha_2 = 1.2 \)

Esscher Premium - Net Premium

Exp. utility Premium - Net Premium
Example: $\bar{x} = 5$ and $n = 10$

Net Premium - Net Premium

Esscher Premium - Esscher Premium

Esscher Premium - Net Premium

Exp. utility Premium - Net Premium

Thank you for your attention!

Acknowledgements
Thanks to projects MTM2014-57559-P and MTM2017-89577-P. I would like to acknowledge the predoctoral fellowship UCA/REC02VI/2015 of Universidad de Cádiz.