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To Bet or Not to Bet... In EUT

When is it Pareto-optimal for risk-averse agents to take bets?

ùñ Starting from an economic environment with no aggregate uncertainty, under what

conditions is it Pareto-improving to introduce uncertainty in the economy through betting

(trade of an uncertain asset)?

One obvious case is when the agents are risk-averse EU-maximizers and do not share
beliefs (Billot et al., 2000, ECMA):

ùñ If the agents disagree on probability assessments, then they find it Pareto-improving to

engage in uncertainty-generating trade (i.e., to bet):

Disagreement about beliefs
EUT
ùñ Betting is Pareto-improving

ùñ Conversely, disagreement about probabilities is the only way that betting may be

Pareto-improving when starting from a no-betting allocation:

Common beliefs
EUT
ùñ Betting is not Pareto-improving (no-betting PO)
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Bilateral Risk Sharing: The Main Idea

We examine a situation in which both the agent and the counterparty are RDU, with
different distortions of the same underlying probability measure.

ùñ We show that, as long as the agents’ distortion functions satisfy a certain consistency
requirement, PO allocations are no-betting allocations.
ùñ For instance, when both agents are strongly-risk-averse (convex distortions).

ùñ Otherwise, betting is PO.

Tim J. Boonen 3/18



Bilateral Risk Sharing: The Main Idea

We examine a situation in which both the agent and the counterparty are RDU, with
different distortions of the same underlying probability measure.

ùñ We show that, as long as the agents’ distortion functions satisfy a certain consistency
requirement, PO allocations are no-betting allocations.
ùñ For instance, when both agents are strongly-risk-averse (convex distortions).

ùñ Otherwise, betting is PO.

Tim J. Boonen 3/18



Setting

Let pS ,Σq be a measurable space, and let B pΣq be the vector space of all bounded,

R-valued, and Σ-measurable functions on pS ,Σq.

There are two agents who seek a risk-sharing arrangement.

Agent 1 is subject to a given risk X1 P B pΣq and Agent 2 is subject to a risk

X2 P B pΣq, where the realizations are interpreted as losses.

We assume no aggregate uncertainty in this economy, which implies that X1 ` X2 “ c,
for an exogenously given c P R.

ùñ Trading is therefore seen as betting rather than as hedging.
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Setting

An allocation is a pair
´
X̂1, X̂2

¯
P BpΣq ˆ BpΣq such that X̂1 ` X̂2 “ X1 ` X2 “ c.

An allocation
´
X̂1, X̂2

¯
P BpΣq ˆ BpΣq is called a no-betting allocation if

X̂i psq “ X̂i ps 1q, for all s , s 1 P S , and for i “ 1, 2.

ùñ For example, pαc, p1 ´ αq cq is a no-betting allocation, for any α P R.

Agent 1 has initial wealth W 1
0 P R, and his/her total state-contingent wealth after risk

sharing is the random variable W 1 P B pΣq defined by

W 1 psq :“ W 1
0 ´ X̂1 psq , @s P S .

Agent 2 has initial wealth W 2
0 P R, and his/her total state-contingent wealth after risk

sharing is the random variable W 2 P B pΣq defined by

W 2 psq :“ W 2
0 ´ X̂2 psq , @s P S .
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Assumptions

The preferences of Agent 1 are to maximize:
ż

û1

´
W 1

¯
dT1 ˝ P “

ż
û1

´
W 1

0 ´ X̂1

¯
dT1 ˝ P.

The preferences of Agent 2 are to maximize:
ż

û2

´
W 2

¯
dT2 ˝ P “

ż
û2pW 2

0 ´ X̂2q dT2 ˝ P.

The utility functions ûi are increasing, strictly concave, continuously differentiable, and

satisfy the Inada conditions lim
xÑ´8

û1
i
pxq “ `8 and lim

xÑ`8
û1

i
pxq “ 0.

The probability weighting functions Ti : r0, 1s Ñ r0, 1s are such that Ti p0q “ 0,

Ti p1q “ 1, and functions Ti are absolutely continuous and increasing.
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What if there is aggregate uncertainty?

In part, an open question...

Chateauneuf et al. (2000), Tsanakas and Christofides (2006), Carlier and Dana (2008),

Chakravarty and Kelsey (2015) all assume that the probability weighting functions are

convex.

Xia and Zhou (2016) assume that all agents use the same probability weighting

function.

Jin et al. (2019) show that Pareto optimal risk-sharing contracts exist under technical

conditions that require aggregate market uncertainty.

It is well-known in economics that (no) aggregate uncertainty matters (Billot et al.,

2000, 2002; Chateauneuf et al., 2000; Ghirardato and Siniscalchi, 2018; B and

Ghossoub, 2020).
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Reminiscent problem

Define Y :“ X̂1 ´ c;

Define the utility functions u1 and u2 by

u1pxq :“ û1pW 1
0 ´ c ` xq and u2pxq :“ û2pW 2

0 ` xq, for x P R.

A risk-sharing contract Y ˚ P B pΣq is Pareto optimal (PO) if there does not exist any
other risk-sharing contract Y P B pΣq such that

ż
u1 p´Y q dT1 ˝ P ě

ż
u1 p´Y ˚q dT1 ˝ P and

ż
u2 pY q dT2 ˝ P ě

ż
u2 pY ˚q dT2 ˝ P ,

with at least one strict inequality.

If Y ˚ P B pΣq is PO, we say that the allocation
´
X̂˚

1 , X̂
˚
2

¯
is PO, where X̂˚

1 :“ Y ˚ ` c

and X̂˚
2 :“ ´Y ˚.

Tim J. Boonen 8/18



Reminiscent problem

Define Y :“ X̂1 ´ c;

Define the utility functions u1 and u2 by

u1pxq :“ û1pW 1
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0 ` xq, for x P R.

A risk-sharing contract Y ˚ P B pΣq is Pareto optimal (PO) if there does not exist any
other risk-sharing contract Y P B pΣq such that

ż
u1 p´Y q dT1 ˝ P ě

ż
u1 p´Y ˚q dT1 ˝ P and

ż
u2 pY q dT2 ˝ P ě

ż
u2 pY ˚q dT2 ˝ P ,

with at least one strict inequality.

If Y ˚ P B pΣq is PO, we say that the allocation
´
X̂˚

1 , X̂
˚
2

¯
is PO, where X̂˚

1 :“ Y ˚ ` c

and X̂˚
2 :“ ´Y ˚.

Tim J. Boonen 8/18



Reminiscent problem

Define Y :“ X̂1 ´ c;

Define the utility functions u1 and u2 by

u1pxq :“ û1pW 1
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Setting

´
pPV0

¯
sup

Y PBpΣq

"ż
u1 p´Y q dT1 ˝ P :

ż
u2 pY q dT2 ˝ P ě V0

*
.

Lemma

(i) If the risk-sharing contract Y ˚ P B pΣq is Pareto optimal, then it solves Problem

´
pPV0

¯

with V0 :“
ş
u2 pY ˚q dT2 ˝ P;

(ii) for a given V0 P R, any solution to Problem

´
pPV0

¯
is Pareto optimal;

(iii) if Y ˚ P B pΣq solves Problem

´
pPV0

¯
for a given V0 P R, then

ż
u2 pY ˚q dT2 ˝ P “ V0.
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Optimal Risk-Sharing Between Two RDU Agents

Theorem

A risk-sharing contract Y ˚ is PO if there exists some λ˚ ą 0 such that

Y ˚ “ m´1
´
λ˚δ1

´
T1 pUq

¯¯
,

where:

U is a random variable on pS ,Σ,Pq with a uniform distribution on p0, 1q;

m pxq :“
u1

1p´xq

u1

2pxq , for all x ě 0;

δ is the convex envelope on r0, 1s of the function Ψ : r0, 1s Ñ R defined by

Ψ ptq :“ rT2

`
T ´1

1 ptq
˘
, where rT2 ptq “ 1 ´ T2 p1 ´ tq, for each t P r0, 1s.

Moreover, for every Pareto optimal risk-sharing contract Y , there exists a λ˚ ą 0 such that

Y has the same distribution as m´1
´
λ˚δ1

´
T1 pUq

¯¯
under P.
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Optimal Risk-Sharing Between Two RDU Agents

Corollary

If there exists i P t1, 2u such that for all z P p0, 1q,

p‹q
rT 2

i
pzq

rT 1
i

pzq
ą

T 2
j pzq

T 1
j

pzq
,

for rTi pzq :“ 1 ´ Ti p1 ´ zq, then the risk-sharing contract Y ˚ is PO if there exists some

λ˚ ą 0 such that

Y ˚ “ m´1

ˆ
λ˚

ˆ
T 1

2 p1 ´ Uq

T 1
1 pUq

˙˙
.

Moreover, for every Pareto optimal risk-sharing contract Y , there exists a λ˚ ą 0 such that

Y has the same distribution as m´1
´
λ˚

´
T 1

2p1´Uq

T 1

1pUq

¯¯
under P.

Condition p‹q is satisfied for instance when both T1 and T2 are concave.
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Example with Inverse S-shaped Probability Weighting Functions

As in Tversky and Kahneman (1992), let the distortion function Ti be given by:

Ti ptq “
tγi

`
tγi ` p1 ´ tqγi

˘1{γi
, @t P r0, 1s,

for some γi P p0, 1s.

It then follows that:

Ψ ptq “ 1 ´

`
1 ´ T ´1

1 ptq
˘γ2

´`
T ´1

1 ptq
˘γ2

`
`
1 ´ T ´1

1 ptq
˘γ2¯1{γ2

, @t P r0, 1s.

Tim J. Boonen 12/18
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Example, continued

Let γ1 “ 0.5 and γ2 “ 0.9. Then:
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Example, continued

Let uipxq “
´ expp´βixq

βi
, for x P R and βi ą 0.

mpxq “ expppβ1 ` β2qxq for x P R, and so m´1pyq “ lnpyq{pβ1 ` β2q for y ą 0.

Let β1 “ 0.5 and β2 “ 0.5. A risk-sharing contract Y ˚ is PO if there exists some

λ˚ ą 0 such that

Y ˚ “ m´1
´
λ˚δ1

´
T1 pUq

¯¯
“

ˆ
1

β1 ` β2

˙
ln

´
λ˚δ1

´
T1 pUq

¯¯

“ ln pλ˚q ` ln
´
δ1

´
T1 pUq

¯¯
.

Thus, the choice of λ˚ ą 0 leads to a deterministic side-payment (positive or negative),

in addition to the risk-sharing contract I ˚ pUq :“ ln
´
δ1

´
T1 pUq

¯¯
.
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Example, continued

Figure: This graph plots the function I ˚, where I ˚ pUq :“ ln
´
δ1

´
T1 pUq

¯¯
and U is a random

variable on pS,Σ,Pq with a uniform distribution on p0, 1q. Agent 1 receives “large” gains with small

probability (gambling)
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Sunspots

Theorem

The following are equivalent:

(1) Ψptq :“ rT2

`
T ´1

1 ptq
˘

ě t for all t P r0, 1s.

(2) There exists a Pareto optimal no-betting allocation.

(3) Any Pareto optimal risk-sharing contract is a no-betting allocation.

(4) Every no-betting allocation is Pareto optimal.

Here, (1) writes as

T1pzq ` T2p1 ´ zq ď 1, or T1pzq ´ z ` T2p1 ´ zq ´ p1 ´ zq ď 0, for all z P r0, 1s.

For instance, if for a small z P p0, 1q, Agent 1 over-weights good outcomes (T1pzq ą z) and

Agent 2 under-weights bad outcomes (T2p1 ´ zq ą 1 ´ z), there is a desire to shift losses

from Agent 1 to Agent 2, and thus random Pareto optimal risk-sharing contracts appear.
Tim J. Boonen 16/18
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Sunspots

Corollary

If for all z P p0, 1q,

p‹‹q
rT 2

i pzq

rT 1
i

pzq
ď

T 2
j pzq

T 1
j

pzq
,

then Ψptq ě t for all t P r0, 1s.

Condition p‹‹q holds, for instance, when both T1 and T2 are convex.

Condition p‹‹q holds when both T1 and T2 are linear, and thus when both agents are

EU maximizers.

More generally, Condition p‹‹q can be seen as a requirement on the the degree of

relative probabilistic risk aversion of the one agent compared to the other one.

Tim J. Boonen 17/18



Sunspots

Corollary

If for all z P p0, 1q,

p‹‹q
rT 2

i pzq

rT 1
i

pzq
ď

T 2
j pzq

T 1
j

pzq
,

then Ψptq ě t for all t P r0, 1s.

Condition p‹‹q holds, for instance, when both T1 and T2 are convex.

Condition p‹‹q holds when both T1 and T2 are linear, and thus when both agents are

EU maximizers.

More generally, Condition p‹‹q can be seen as a requirement on the the degree of

relative probabilistic risk aversion of the one agent compared to the other one.

Tim J. Boonen 17/18



Sunspots

Corollary

If for all z P p0, 1q,

p‹‹q
rT 2

i pzq

rT 1
i

pzq
ď

T 2
j pzq

T 1
j

pzq
,

then Ψptq ě t for all t P r0, 1s.

Condition p‹‹q holds, for instance, when both T1 and T2 are convex.

Condition p‹‹q holds when both T1 and T2 are linear, and thus when both agents are

EU maximizers.

More generally, Condition p‹‹q can be seen as a requirement on the the degree of

relative probabilistic risk aversion of the one agent compared to the other one.

Tim J. Boonen 17/18



Conclusion

We give an explicit characterization of optimal risk-sharing contracts, in various situations.

In particular, we show that:

(i) Betting is not PO when the two agents are averse to mean-preserving increases in risk

(i.e., distortions are convex).

(ii) If the distortions are non-convex, then betting (non-constant) allocations are PO if it
does not hold that Ψpsq ě s .

ùñ Betting or no betting, this thus only follows from distortions Ti ; not on the utilities.

(iii) The set of PO is fully described.
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