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N
To Bet or Not to Bet... In EUT

@ When is it Pareto-optimal for risk-averse agents to take bets?

= Starting from an economic environment with no aggregate uncertainty, under what
conditions is it Pareto-improving to introduce uncertainty in the economy through betting
(trade of an uncertain asset)?

@ One obvious case is when the agents are risk-averse EU-maximizers and do not share
beliefs (Billot et al., 2000, ECMA):

— If the agents disagree on probability assessments, then they find it Pareto-improving to
engage in uncertainty-generating trade (i.e., to bet):

. . EUT o . .
Disagreement about beliefs = Betting is Pareto-improving

= Conversely, disagreement about probabilities is the only way that betting may be
Pareto-improving when starting from a no-betting allocation:

Common beliefs a4 Betting is not Pareto-improving (no-betting PO)
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@ We examine a situation in which both the agent and the counterparty are RDU, with
different distortions of the same underlying probability measure.
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Bilateral Risk Sharing: The Main Idea

@ We examine a situation in which both the agent and the counterparty are RDU, with
different distortions of the same underlying probability measure.

= We show that, as long as the agents’ distortion functions satisfy a certain consistency
requirement, PO allocations are no-betting allocations.
= For instance, when both agents are strongly-risk-averse (convex distortions).

= Otherwise, betting is PO.
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Setting

@ Let (S, X) be a measurable space, and let B (X) be the vector space of all bounded,
R-valued, and X-measurable functions on (S, X).
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Setting

@ Let (S, X) be a measurable space, and let B (X) be the vector space of all bounded,
R-valued, and ¥-measurable functions on (S, X).

@ There are two agents who seek a risk-sharing arrangement.

@ Agent 1 is subject to a given risk X; € B(X) and Agent 2 is subject to a risk
Xo € B(X), where the realizations are interpreted as losses.

@ We assume no aggregate uncertainty in this economy, which implies that X1 + X5 = ¢,
for an exogenously given c € R.

= Trading is therefore seen as betting rather than as hedging.
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Setting

@ An allocation is a pair <)A<1, )A<2) € B(X) x B(X) such that X1+ X =X+ X = c.

@ An allocation ()A<1,)A<2) € B(Y) x B(X) is called a no-betting allocation if
Xi(s) =X (s'), foralls,s’e€ S, and for i = 1,2.

= For example, (ac, (1 — a) ¢) is a no-betting allocation, for any a € R.

@ Agent 1 has initial wealth WO1 € R, and his/her total state-contingent wealth after risk
sharing is the random variable W' € B (X) defined by

Wt(s):= Wi—Xi(s), VseS§.
@ Agent 2 has initial wealth W02 € R, and his/her total state-contingent wealth after risk
sharing is the random variable W? € B (X) defined by
W2 (s) := W2 — Xz (s), VseS.
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Assumptions
@ The preferences of Agent 1 are to maximize:
fal(\/\ﬂ) dTioP = fal(wol - >%1> dTy o P.
@ The preferences of Agent 2 are to maximize:

Jaz(\/\ﬂ) dTo0 P = faz<wg_>“<2> dTo 0 P.
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Assumptions
@ The preferences of Agent 1 are to maximize:
fal(\/\ﬂ) dTioP = fal(wol - >%1> dTy o P.
@ The preferences of Agent 2 are to maximize:

Jaz(\/\ﬂ) dTo0 P = Jaz(\/\/g—&) dTo 0 P.

@ The utility functions I; are increasing, strictly concave, continuously differentiable, and
satisfy the Inada conditions lim o (x) = +00 and lim @7 (x) = 0.
X——00 X——+00

@ The probability weighting functions T; : [0, 1] — [0, 1] are such that T;(0) = 0,
Ti(1) =1, and functions T, are absolutely continuous and increasing.
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What if there Is aggregate uncertainty?

@ In part, an open question...

@ Chateauneuf et al. (2000), Tsanakas and Christofides (2006), Carlier and Dana (2008),
Chakravarty and Kelsey (2015) all assume that the probability weighting functions are
CONVEX.

@ Xia and Zhou (2016) assume that all agents use the same probability weighting
function.

@ Jin et al. (2019) show that Pareto optimal risk-sharing contracts exist under technical
conditions that require aggregate market uncertainty.

@ It is well-known in economics that (no) aggregate uncertainty matters (Billot et al.,
2000, 2002; Chateauneuf et al., 2000; Ghirardato and Siniscalchi, 2018; B and
Ghossoub, 2020).
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Reminiscent problem

@ Define Y := )A<1 —C;
@ Define the utility functions vy and u» by
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Reminiscent problem

@ Define Y := )A<1 —C;
@ Define the utility functions vy and u» by
ui(x) i= (W3 — c+x) and wn(x) := to(WE + x), for x e R.

@ A risk-sharing contract Y* € B (X) is Pareto optimal (PO) if there does not exist any
other risk-sharing contract Y € B (X) such that

Jul (=Y)dTioP > ful (=Y*)dT10P and fuz (Y)YdT,oP > fuz (Y*)dT,0 P,
with at least one strict inequality.
o If Y*e B(X) is PO, we say that the allocation ()A<1"‘)A<2*> is PO, where Xj := Y* 4 ¢
and X3 == —Y*
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Setting

(Pu)  sup Uul (—Y) dTloP:JLQ(Y) dTo0 P > \/O}_
YeB(¥)
Lemma

(i) If the risk-sharing contract Y* € B (X) is Pareto optimal, then it solves Problem (73\/0)
with Vg := SU2 (Y*) dTo0 P;
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Setting

(Pv)  sup Uul (=Y) dT10P: Ju2(Y) dToo0 P> \/O}.
YeB(X)
Lemma

(i) If the risk-sharing contract Y* € B (X) is Pareto optimal, then it solves Problem (73\/0)
with Vg := SU2 (Y*) dTo0 P;

(i) for a given Vy € R, any solution to Problem <73v0) is Pareto optimal;

(iil) if Y* € B(X) solves Problem (73\/0) for a given Vo € R, then juz (Y*) dToo P = V.

<

5%
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Optimal Risk-Sharing Between Two RDU Agents

Theorem
A risk-sharing contract Y* is PO if there exists some \* > 0 such that

y* = m! <>\*6/<T1(U))),

where:

@ U is a random variable on (S, X, P) with a uniform distribution on (0, 1),
Uy (=)
(%)
@ 0 is the convex envelope on [0, 1] of the function W : [0, 1] — R defined by
W (t):= To (T2 (t)), where T (t) =1 — To(1—t), for each t € [0, 1].

o m(x):= , for all x = 0;
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Optimal Risk-Sharing Between Two RDU Agents

Theorem

A risk-sharing contract Y* is PO if there exists some \* > 0 such that

y* = m! <>\*6/<T1 (U) )) ,
where:

@ U is a random variable on (S, X, P) with a uniform distribution on (0, 1),
Uy (=)
(%)
@ 0 is the convex envelope on [0, 1] of the function W : [0, 1] — R defined by
W (t):= To (T2 (t)), where T (t) =1 — To(1—t), for each t € [0, 1].

o m(x):= , for all x = 0;

Moreover, for every Pareto optimal risk-sharing contract Y, there exists a A\* > 0 such that
Y has the same distribution as m~* (A*(S’(Tl (U) >> under P.
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Optimal Risk-Sharing Between Two RDU Agents

Corollary
If there exists i € {1, 2} such that for all z € (0, 1),

N

HENRHG

) Ti(z) T (@)

for Tj(z) := 1 — T; (1 — z), then the risk-sharing contract Y* is PO if there exists some
A* > 0 such that - U
Y* _ 1 )\* 2 — ]
" ( ( T (U) ))

Moreover, for every Pareto optimal risk-sharing contract Y, there exists a \* > 0 such that

Y has the same distribution as m~1 (A* (T%({I(Lg))) under P.

Condition (%) is satisfied for instance when both T7 and T, are concave.
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Example with Inverse S-shaped Probability Weighting Functions

@ As in Tversky and Kahneman (1992), let the distortion function T; be given by:

T (t) = e Vte 0,1
I( )_ (t'Yi N (1_ t)’Yi)l/”Y/' E[ ' ]v

for some «y; € (0, 1].
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Example with Inverse S-shaped Probability Weighting Functions

@ As in Tversky and Kahneman (1992), let the distortion function T; be given by:

T (t) = e Vte 0,1
I( )_ (t'Yi N (1_ t)’Yi)l/“//' E[ ' ]v

for some «y; € (0, 1].
@ It then follows that:

(1-T77H ()™
(@) + (=77 (1))

W(t)=1- . Vte[0,1].

Yy

LI
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Example, continued

Let vy; = 0.5 and v = 0.9. Then:

0.8
0.61
0.4
0.2
0 . . . . .
0 0.2 0.4 0.6 0. 1
t
—T—T——v—3 3
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o Let ui(x) = w for xe R and §; > 0.
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Example, continued

o Let ui(x) = w for xe R and §; > 0.

@ m(x) = exp((B1 + B2)x) for xe R, and so m~*(y) = In(y)/(B1 + B2) for y > 0.
@ Let 81 = 0.5 and B> = 0.5. A risk-sharing contract Y* is PO if there exists some
A* > 0 such that

Y* = m? (A*(Y(Tl (U))) - <ﬁ1 162> In (A*é/(Tl(U)))
—In(A*) +In (6’(T1(U))).

@ Thus, the choice of A\* > 0 leads to a deterministic side-payment (positive or negative),
in addition to the risk-sharing contract /* (U) := In (6’(T1 (U))).

I



Example, continued

Ot2 0j4 0t6 0j8 i

~-0.54

Figure: This graph plots the function /*, where /* (U) := In (6’(T1 ) )) and U is a random
variable on (S, X, P) with a uniform distribution on (0, 1). Agent 1 receives “large” gains with small
probability (gambling)
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Sunspots
Theorem
The following are equivalent:

(1) W(t):= To (T (t)) =t forall t e [0,1].
(2) There exists a Pareto optimal no-betting allocation.
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Theorem

The following are equivalent:
(1) W(t):= To (T (t)) =t forall t e [0,1].
(2) There exists a Pareto optimal no-betting allocation.

(3) Any Pareto optimal risk-sharing contract is a no-betting allocation
(4) Every no-betting allocation is Pareto optimal.
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R
Sunspots

Theorem

The following are equivalent:

(1) W(t):= To (T (t)) =t forall t e [0,1].

(2) There exists a Pareto optimal no-betting allocation.

(3) Any Pareto optimal risk-sharing contract is a no-betting allocation.
(4) Every no-betting allocation is Pareto optimal.

Here, (1) writes as

Ti(z)+ T2(l=2) <1, 0or T1(z) —z+ T2(1—2z) — (1 —2) <0, forall z€ [0, 1].

For instance, if for a small z € (0, 1), Agent 1 over-weights good outcomes (T1(z) > z) and
Agent 2 under-weights bad outcomes (T2(1 — z) > 1 — z), there is a desire to shift losses

from Agent 1 to Agent 2, and thus random Pareto optimal risk-sharing contracts appear.

16/18



Sunspots
Corollary
If for all z € (0, 1),
T T! (z
(**) ! (Z) < J/
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Sunspots
Corollary
If for all z € (0, 1),
T T! (z
(**) ! (Z) < J/
Ti(z) Tjz

then W(t) >t for all t € [0, 1].

@ Condition (%%) holds, for instance, when both T; and T, are convex.

@ Condition (%%) holds when both T; and T5 are linear, and thus when both agents are
EU maximizers.

@ More generally, Condition (%%) can be seen as a requirement on the the degree of
relative probabilistic risk aversion of the one agent compared to the other one.
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Conclusion

We give an explicit characterization of optimal risk-sharing contracts, in various situations.
In particular, we show that:

(i) Betting is not PO when the two agents are averse to mean-preserving increases in risk
(i.e., distortions are convex).

(i) If the distortions are non-convex, then betting (non-constant) allocations are PO if it
does not hold that W(s) > s.

= Betting or no betting, this thus only follows from distortions T;; not on the utilities.

(ii) The set of PO is fully described.

Tim J. Boonen
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